Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37893201

ABSTRACT

Chronic kidney disease (CKD) is characterized by renal parenchymal damage leading to a reduction in the glomerular filtration rate. The inflammatory response plays a pivotal role in the tissue damage contributing to renal failure. Current therapeutic options encompass dietary control, mineral salt regulation, and management of blood pressure, blood glucose, and fatty acid levels. However, they do not effectively halt the progression of renal damage. This review critically examines novel therapeutic avenues aimed at ameliorating inflammation, mitigating extracellular matrix accumulation, and fostering renal tissue regeneration in the context of CKD. Understanding the mechanisms sustaining a proinflammatory and profibrotic state may offer the potential for targeted pharmacological interventions. This, in turn, could pave the way for combination therapies capable of reversing renal damage in CKD. The non-replacement phase of CKD currently faces a dearth of efficacious therapeutic options. Future directions encompass exploring vaptans as diuretics to inhibit water absorption, investigating antifibrotic agents, antioxidants, and exploring regenerative treatment modalities, such as stem cell therapy and novel probiotics. Moreover, this review identifies pharmaceutical agents capable of mitigating renal parenchymal damage attributed to CKD, targeting molecular-level signaling pathways (TGF-ß, Smad, and Nrf2) that predominate in the inflammatory processes of renal fibrogenic cells.

2.
Ann Med ; 55(1): 543-557, 2023 12.
Article in English | MEDLINE | ID: mdl-36826975

ABSTRACT

The sympathetic nervous system and the immune system are responsible for producing neurotransmitters and cytokines that interact by binding to receptors; due to this, there is communication between these systems. Liver immune cells and nerve fibres are systematically distributed in the liver, and the partial overlap of both patterns may favour interactions between certain elements. Dendritic cells are attached to fibroblasts, and nerve fibres are connected via the dendritic cell-fibroblast complex. Receptors for most neuroactive substances, such as catecholamines, have been discovered on dendritic cells. The sympathetic nervous system regulates hepatic fibrosis through sympathetic fibres and adrenaline from the adrenal glands through the blood. When there is liver damage, the sympathetic nervous system is activated locally and systemically through proinflammatory cytokines that induce the production of epinephrine and norepinephrine. These neurotransmitters bind to cells through α-adrenergic receptors, triggering a cellular response that secretes inflammatory factors that stimulate and activate hepatic stellate cells. Hepatic stellate cells are key in the fibrotic process. They initiate the overproduction of extracellular matrix components in an active state that progresses from fibrosis to liver cirrhosis. It has also been shown that they can be directly activated by norepinephrine. Alpha and beta adrenoblockers, such as carvedilol, prazosin, and doxazosin, have recently been used to reverse CCl4-induced liver cirrhosis in rodent and murine models.KEY MESSAGESNeurotransmitters from the sympathetic nervous system activate and increase the proliferation of hepatic stellate cells.Hepatic fibrosis and cirrhosis treatment might depend on neurotransmitter and hepatic nervous system regulation.Strategies to reduce hepatic stellate cell activation and fibrosis are based on experimentation with α-adrenoblockers.


Subject(s)
Hepatic Stellate Cells , Neuroimmunomodulation , Mice , Humans , Animals , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/pathology , Liver/metabolism , Norepinephrine/metabolism , Fibrosis , Cytokines , Neurotransmitter Agents/metabolism
3.
Oxid Med Cell Longev ; 2022: 6085515, 2022.
Article in English | MEDLINE | ID: mdl-35189631

ABSTRACT

Doxazosin and carvedilol have been evaluated as an alternative treatment against chronic liver lesions and for their possible role during the regeneration of damage caused by liver fibrosis in a hamster model. However, these drugs have been reported to induce morphological changes in hepatocytes, affecting the recovery of liver parenchyma. The effects of these α/𝛽 adrenoblockers on the viability of hepatocytes are unknown. Herein, we demonstrate the protective effect of curcumin against the possible side effects of doxazosin and carvedilol, drugs with proven antifibrotic activity. After pretreatment with 1 µM curcumin for 1 h, HepG2 cells were exposed to 0.1-25 µM doxazosin or carvedilol for 24, 48, and 72 h. Cell viability was assessed using the MTT assay and SYTOX green staining. Morphological changes were detected using the hematoxylin and eosin (H&E) staining and scanning electron microscopy (SEM). An expression of apoptotic and oxidative stress markers was analyzed using reverse transcription-quantitative PCR (RT-qPCR). The results indicate that doxazosin decreases cell viability in a time- and dose-dependent manner, whereas carvedilol increases cell proliferation; however, curcumin increases or maintains cell viability. SEM and H&E staining provided evidence that doxazosin and carvedilol induced morphological changes in HepG2 cells, and curcumin protected against these effects, maintaining the morphology in 90% of treated cells. Furthermore, curcumin positively regulated the expression of Nrf2, HO-1, and SOD1 mRNAs in cells treated with 0.1 and 0.5 µM doxazosin. Moreover, the Bcl-2/Bax ratio was higher in cells that were treated with curcumin before doxazosin or carvedilol. The present study demonstrates that curcumin controls doxazosin- and carvedilol-induced cytotoxicity and morphological changes in HepG2 cells possibly by overexpression of Nrf2.


Subject(s)
Carvedilol/toxicity , Curcumin/pharmacology , Doxazosin/toxicity , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression/drug effects , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...